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a b s t r a c t

The flow of a monatomic gas through a slit and an orifice due to an arbitrarily large pressure difference is
examined on the basis of the nonlinear BhatnagareGrosseKrook (BGK) model equation, subject to
Maxwell diffuse boundary conditions. The governing kinetic equation is discretized by a second-order
control volume scheme in the physical space and the discrete velocity method in the molecular
velocity space. The nonlinear fully deterministic algorithm is optimized to reduce the computational
effort by introducing memory usage optimization, grid refinement and parallelization in the molecular
velocity space. Results for the flow rates and the macroscopic distributions of the flow field are presented
in a wide range of the Knudsen number for several pressure ratios. The effect of the various geometric
and physical parameters on the flow field is examined. Comparison with previously reported corre-
sponding Direct Simulation Monte Carlo (DSMC) results indicates a very good agreement, which clearly
demonstrates the accuracy of the kinetic algorithm and furthermore the reliability of the BGK model for
simulating pressure driven flows.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Non-equilibrium flows may appear in several technological
fields includingmicrofluidics, vacuum technology and high altitude
aerodynamics. The degree of departure from local equilibrium is
characterized by the Knudsen number, which is defined as the ratio
of the mean free path over a characteristic macroscopic length of
the problem. It is well known that when the Knudsen number is
larger than 0.1 the typical NaviereStokeseFourier formulation is
not valid and alternative mesoscale approaches based on kinetic
theory, as described by the Boltzmann equation or reliable kinetic
model equations, must be implemented.

Over the years, linearized kinetic equations have been exten-
sively applied with great success to solve internal fully developed
gas flow through long channels of various cross sections in the
whole range of the Knudsen number [1e3]. The numerical solution
is fully deterministic based on the discretization of the physical
space by finite difference schemes and of the molecular velocity
space by discrete velocity methods. Then, the discretized equations
are solved in an iterative manner, while synthetic acceleration
algorithms may be applied to accelerate the slow convergence of
is).
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the iterationmap at the slip and hydrodynamic regimes [4]. Overall,
reliable results for linear fully developed flows through long
channels of any cross section may be obtained with moderate
computational effort.

However, when the flow becomes nonlinear, i.e. in the case of
fast flows through channels of finite length, including flows
through slits and orifices, the computational effort is significantly
increased. The incoming distribution functions at the entrance and
the exit of the channel are not Maxwellians and therefore
adequately large computational domains must be included before
and after the channel to properly impose the boundary conditions.
It is noted that in fully developed flows through long channels the
flow is simulated only in one cross section of the channel and then,
using a standard methodology [1,2], the mass flow rate is esti-
mated, while in short channels kinetic modeling is required in the
whole flow field. This is the main reason for the large computa-
tional effort required in the latter case, compared to the one for
fully developed flows. The most common approach for solving
nonlinear flows is the DSMC method [5], which is a powerful
stochastic method for high speed flows, circumventing the solution
of a kinetic equation. The DSMC method has been recently imple-
mented to solve flow through slits, orifices and short tubes [6e10].
However, in general this method is associated with large compu-
tational effort, certain difficulties in the parallelization of the code
and statistical noise for low speed flows. Therefore, it is important
to develop alternative approaches based on computationally effi-
cient deterministic solutions of model kinetic equations. Several
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researchers have developed such algorithms [11e13]. However,
additional research work in this field is needed.

In the presentwork, the gas flow through a slit and an orifice has
been simulated by introducing a computationally efficient
nonlinear fully deterministic algorithm based on the nonlinear BGK
kinetic model equation subject to Maxwell diffuse boundary
conditions. The kinetic equations have been solved by applying in
the physical space a second-order control volume scheme and in
the molecular velocity space the discrete velocity method. Gradual
grid refinement has been introduced to speed-up the slow
convergence of the iterative map in the slip and hydrodynamic
regimes [14,15]. Moreover, the code is parallelized in the molecular
velocity space, while memory demands are reduced by proper
handling of the allocated arrays. Results for the flow rates and the
macroscopic quantities are presented in the whole range of the
rarefaction for several values of the pressure ratio between the two
reservoirs. Comparison with previously reported corresponding
DSMC results indicates very good agreement.

2. Flow configuration and computational domain

The flow of a monatomic gas through a slit of height H and
through an orifice of radius R contained in an infinitely thin parti-
tion that separates two containers is considered. The gas in the
containers far from the opening is in equilibrium at pressures P1
and P2, with P1 > P2, and temperatures T0, which is also the
temperature of the partition. The implemented coordinate system
is Cartesian for the slit flow and Cylindrical for the orifice flow. Both
flow configurations are two-dimensional in the physical space,
with the x̂ axis denoting the flow direction, while the slit and the
orifice are located at x̂ ¼ 0. The second axis is denoted by ŷ in the
slit flow and by r̂ in the orifice flow. The computational domain
consists of the two large computational areas, before and after the
partition, defined by ð�XL � x̂� 0;0� ŷ; r̂ � YLÞ and ð0� x̂� XR;0�
ŷ; r̂ � YRÞ, which correspond to the upstream and downstream
reservoirs respectively including the infinitely thin partition which
contains the slit ð0 � ŷ � H=2Þ or the orifice ð0 � r̂ � RÞ. The flow
configuration and the computational domain are shown in Fig. 1.

The reference quantities are H, R, T0, P1. In addition, N1 is the
reference number density defined as P1 ¼ N1kBT0, with kB denoting
the Boltzmann constant, while the most probable molecular
velocity, defined as y0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT0=m

p
with m denoting the molec-

ular mass, is the reference velocity. The flow is characterized by the
reference rarefaction parameter for the slit and the orifice respec-
tively defined as

dslit0 ¼ P1H
m0y0

and dorifice0 ¼ P1R
m0y0

(1)
Fig. 1. Upper half of flow configuration and computational domain.
where m0 is the gas viscosity at reference temperature T0. The
reference rarefaction is proportional to the inverse of the reference
Knudsen number. The objective is to estimate for each flow the flow
rates and all macroscopic distributions.

3. Formulation

The flow is modeled by the nonlinear BGK model equation
subject to purely diffuse boundary conditions. The choice of the
BGKmodel for simulating the flow is justified by the fact that this is
a pressure driven flow and the expected variation of temperature in
the flow field is small. The main unknown is the distribution
function f ¼ f ðs; xÞ, while s ¼ ðx̂; ŷÞ or s ¼ ðx̂; r̂Þ is the position
vector and x ¼ ðxx; xy; xzÞ is the molecular velocity vector. It is seen
that the distribution function depends on five independent vari-
ables. The local pressure and temperature are defined by P and T
respectively.

It is convenient to introduce the following non-dimensional
quantities:

x ¼ x̂
H

or x ¼ x̂
R
; y ¼ ŷ

H
; r ¼ r̂

R
; c ¼ x

y0
;

g ¼ f y30
N1

; n ¼ N
N1

; u ¼ U
y0
; s ¼ T

T0
; p ¼ P

P1
(2)

In subsections 3.1 and 3.2, the formulation of the flow through
a slit and an orifice respectively is presented. In both cases, the hard
sphere model is implemented and therefore the variation of the
viscosity is proportional to the square root of the temperature.

3.1. Flow through a slit

The non-dimensional quantities are introduced into the gov-
erning equation to yield [16,17]

cpcos q
vg
vx

þ cpsin q
vg
vy

¼ d0n
ffiffiffi
s

p �
gM � g

�
(3)

where gM ¼ n=ðpsÞ3=2exp½�ðc � uÞ2=s�. Moreover, for computa-
tional purposes it is convenient to express the components (cx,cy,cz)
of the particle velocity in terms of cylindrical coordinates (cp,q,cz),
where cp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2x þ c2y

q
and q ¼ tan�1ðcy=cxÞ. Also, by taking

advantage of the two-dimensionality of the flow, it is possible to
eliminate the cz component of the distribution function by intro-
ducing appropriate projections, expressed by the moments

F
�
x; y; cx; cy

� ¼
ZN

�N

gðx; y; cÞdcz and

J
�
x; y; cx; cy

� ¼
ZN

�N

c2z gðx; y; cÞdcz (4)

Then, operating accordingly on Eq. (3), after some routine
manipulation the following coupled set of integro-differential
equations is reduced:

cpcos q
vF
vx

þ cpsin q
vF
vy

¼ d0n
ffiffiffi
s

p �
FM �F

�
(5)

cpcos q
vJ
vx

þ cpsin q
vJ
vy

¼ d0n
ffiffiffi
s

p �
JM �J

�
(6)

The corresponding reduced Maxwellians are:
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FM ¼ n
ps

exp
h
�
��

cpcos q� ux
�2þ�

cpsin q� uy
�2�.s

i
(7)
JM ¼ n
2p

exp
h
�
��

cpcos q� ux
�2þ�

cpsin q� uy
�2�.s

i
(8)

Themacroscopic quantities are expressed in terms ofF andJ as

nðx; yÞ ¼
Z2p

0

ZN

0

Fcpdcpdq (9)

uxðx; yÞ ¼ 1
n

Z2p

0

ZN

0

�
cpcos q

�
Fcpdcpdq (10)

uyðx; yÞ ¼ 1
n

Z2p

0

ZN

0

�
cpsin q

�
Fcpdcpdq (11)

sðx; yÞ ¼ 2
3n

Z2p

0

ZN

0

�
c2pFþJ

�
cpdcpdq� 2

3

�
u2x þ u2y

�
(12)

Based on the above, the slit flow configuration has been reduced
to a 4D problem gaining significantly in CPU time without losing
any of the physical findings of the flow. The mass flow rate through
the slit is calculated by

_Mslit ¼ m
ZH=2

�H=2

Nð0; ŷÞUxð0; ŷÞdŷ (13)

and is non-dimensionalized by the corresponding mass flow rate
for free molecular flow into vacuum d ¼ 0, P2/P1 ¼ 0 given by
_Mfm;slit ¼ ðHP1Þ=ðy0

ffiffiffiffi
p

p Þ. Then, the dimensionless flow rate is
defined as

Wslit ¼
_Mslit

_Mfm;slit
¼ 4

ffiffiffiffi
p

p
Gslit (14)

where

Gslit ¼
Z1=2

0

nð0; yÞuxð0; yÞdy (15)

Turning to the issue of the boundary conditions, it is assumed
that molecules are fully accommodated at both sides of the parti-
tion and therefore the outgoing distributions are described by
Maxwellians having the temperature of the partition. Also, the gas
at the fictitious boundaries of the computational domain is
assumed in equilibrium and therefore the incoming distributions
are approximated by Maxwellians defined by the local pressure P1
or P2, temperature T0 and zero bulk velocity. Symmetry boundary
conditions are imposed at y ¼ 0. Based on the above, the deduced
boundary conditions in dimensionless form for the reduced
distributions for the slit flow are:

Upstream reservoir

Fþ�� XL=H; y; cp; q
� ¼ Fþ�x; YL=H; cp; q� ¼ 1

p
e�c2p (16)
Jþ�� XL=H; y; cp; q
� ¼ Jþ�x;YL=H; cp; q� ¼ 1

2p
e�c2p (17)
Downstream reservoir

Fþ�XR=H; y; cp; q
� ¼ Fþ�x; YR=H; cp; q� ¼ P2

P1

1
p
e�c2p (18)

Jþ�XR=H; y; cp; q
� ¼ Jþ�x;YR=H; cp; q� ¼ P2

P1

1
2p

e�c2p (19)

Partition wall

Fþ�x/0H; y; cp; q
� ¼ rslitH

p
e�c2p (20)

Jþ�x/0H; y; cp; q
� ¼ rslitH

2p
e�c2p (21)

In all cases the superscripts (þ) denotes outgoing distributions,
while the notation ðHÞ denotes the left (�) and right (þ) sides of
the partitionwall. Finally, in Eqs. (20) and (21) the quantities rH are
specified by the no penetration condition at each side

rslit� ¼ 2
ffiffiffiffi
p

p Zp=2

�p=2

ZN

0

�
cpcos q

�
F
�
0�; y; cp; q

�
cpdcpdq (22)

rslitþ ¼ �2
ffiffiffiffi
p

p Z3p=2

p=2

ZN

0

�
cpcos q

�
F
�
0þ; y; cp; q

�
cpdcpdq (23)
3.2. Flow through an orifice

The non-dimensional quantities for the cylindrical geometry are
introduced into the governing equation to yield [14,18]

cx
vg
vx

þ cpcos q
vg
vr

� cpsin q

r
vg
vq

¼ d0n
ffiffiffi
s

p �
gM � g

�
(24)

where gM ¼ n=ðpsÞ3=2exp½�ðc � uÞ2=s� is the Maxwellian.
However, unlike the flow through a slit, the projection procedure
can not be implemented in the orifice flow which remains a 5D
problem. The macroscopic quantities are given by

nðx; rÞ ¼ 2
ZN

�N

Zp

0

ZN

0

gcpdcpdqdcx (25)

uxðx; rÞ ¼ 2
n

ZN

�N

Zp

0

ZN

0

cxgcpdcpdqdcx (26)

urðx; rÞ ¼ 2
n

ZN

�N

Zp

0

ZN

0

�
cpcos q

�
gcpdcpdqdcx (27)

sðx; rÞ ¼ 4
3n

ZN

�N

Zp

0

ZN

0

h
ðcx � uxÞ2þ

�
cpcos q� ur

�2

þ �
cpsin q

�2igcpdcpdqdcx ð28Þ

The mass flow rate through an orifice is calculated by



Table 1
Dimensionless flow rate through a slit W vs. rarefaction parameter and pressure
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_M ¼ 2pm
ZR

Nð0; r̂ÞU ð0; r̂Þr̂dr̂ (29)

ratio.

Wslit

P2/P1 ¼ 0 P2/P1 ¼ 0.5 P2/P1 ¼ 0.9

d0 BGK DSMC [6] BGK DSMC [7] BGK

0 1.000 e 0.500 e 0.100
0.01 1.003 1.001 0.502 e 0.101
0.1 1.025 1.017 0.519 0.520 0.105
1 1.162 1.139 0.651 0.640 0.138
5 1.383 1.373 1.031 1.015 0.260
10 1.474 1.479 1.238 1.237 0.391
100 1.549 1.566 1.372 1.383 0.678

Table 2
Dimensionless flow rate through an orificeW vs. rarefaction parameter and pressure
ratio.

Worifice

P2/P1 ¼ 0 P2/P1 ¼ 0.5 P2/P1 ¼ 0.9

d0 BGK DSMC [8] BGK DSMC [8] BGK DSMC [8]

0 1.000 e 0.500 e 0.100 e

0.01 1.002 e 0.502 e 0.101 e

0.1 1.020 1.014 0.515 0.509 0.105 0.103
1 1.152 1.129 0.635 0.613 0.140 0.130
5 1.387 e 1.029 e 0.280 e

10 1.472 1.462 1.216 1.188 0.432 0.402
100 1.508 1.534 1.325 1.344 0.669 0.674
orifice

0

x

and it is non-dimensionalized by the corresponding mass flow rate
for free molecular flow into vacuum d ¼ 0, P2/P1 ¼ 0 given by
_Mfm;orifice ¼ ðR2P1

ffiffiffiffi
p

p Þ=ðy0Þ. Then, the dimensionless flow rate is
defined as

Worifice ¼
_Morifice

_Mfm;orifice
¼ 4

ffiffiffiffi
p

p
Gorifice (30)

where

Gorifice ¼
Z1

0

nð0; rÞuxð0; rÞrdr (31)

Next, we move to the description of the boundary conditions
regarding the flow through an orifice. Similar assumptions as is the
case of the flow through a slit are taken into account. As a result,
Maxwellians having the physical characteristics of the partition are
the outgoing distributions from the walls separating the two
containers, while at the fictitious boundaries of the domain, Max-
wellians defined by the local pressure P1 or P2, temperature T0 and
zero bulk velocity are specified as the incoming distributions.
Symmetry boundary conditions are imposed at r ¼ 0. Based on the
above, the boundary conditions in dimensionless form for the
orifice flow are:

Upstream reservoir

gþ
��XL=R;r;cx;cp;q

� ¼ gþ
�
x;YL=R;cx;cp;q

� ¼ 1
p3=2e

�c2 (32)

Downstream reservoir

gþ
�
XR=R;r;cx;cp;q

� ¼ gþ
�
x;YR=R;cx;cp;q

� ¼ P2
P1

1
p3=2e

�c2 (33)

Partition wall

gþ
�
x/0H; r; cx; cp; q

� ¼ rorificeH

p3=2 e�c2 (34)

In all cases the superscripts (þ) denotes outgoing distributions,
while the notation ðHÞ denotes the left (�) and right (þ) sides of
the partitionwall. Finally, in Eq. (34) the quantities rH are specified
by the no penetration condition at each side

rorifice� ¼ 4
ffiffiffiffi
p

p ZN

0

Zp

0

ZN

0

cxg
�
0�; r; cx; cp; q

�
cpdcpdqdcx (35)

rorificeþ ¼ �4
ffiffiffiffi
p

p Z0

�N

Zp

0

ZN

0

cxg
�
0þ; r; cx; cp; q

�
cpdcpdqdcx (36)

Summarizing the formulation it is noted that the flow through
a slit is described by the kinetic equations (5,6) coupled by the
moments (9e12) and subject to boundary conditions (16e21),
while the parameters rslitH are given by (22,23). The flow through an
orifice is described by kinetic equation (24) coupled by the
moments (25e28) and subject to boundary conditions (32e34),
while the parameters rorificeH are given by (35,36). The solution of
the two problems depends on two dimensionless parameters,
namely the reference rarefaction parameter d0 and the pressure
ratio P2/P1.
4. Numerical scheme

The kinetic equations for both problems under consideration are
discretized in the molecular velocity and physical spaces. In
particular, the continuum spectrum of the components cx and cp of
the molecular velocity vector is replaced by a set of discrete
magnitudes cmx ˛½0; cmax

x � and cmp ˛½0; cmax
p �, with m¼ 1,2,.,M, which

are taken to be the roots of the Legendre polynomial of order M
accordingly mapped from [�1,1] to ½0; cmax

x;p �. Also, the polar angle
space is discretized in qk, k ¼ 1,2,.,K angles, uniformly distributed
in [0,2p] for the Cartesian geometry and by making use of the
axisymmetry in [0,p] in the Cylindrical geometry. In the physical
space the computational domain is discretized using (I � J) square
elements of side h. At each square element (i,j), i ¼ 1,2,.,I and
j ¼ 1,2,.,J a central second-order scheme in space is applied. In
addition, the macroscopic moments of the reduced distributions
are estimated by double or triple numerical integration consisting
of one or two Gauss-Legendre quadratures and the trapezoidal rule.
A similar approach has been implemented in Ref. [14,15].

Then, the discretized equations are solved in an iterative
manner consisting of two steps. In the first step, the kinetic equa-
tions are solved for the unknown distributions assuming that the
macroscopic quantities at the right hand side of the kinetic equa-
tions are known. In the second step, updated estimates of the
macroscopic quantities are computed based on the moments of the
distribution functions. The iterative procedure is ended when the
termination criterion is satisfied. This is the typical iteration
scheme used in discrete velocity kinetic solvers. However, due to
the fact that the regions at the inlet and at the outlet of the
computational domain must be adequately large, the computa-
tional cost rises significantly.

Therefore, here this typical algorithm has been upgraded by
making use of a) message passing interface (MPICH2), b) memory
handling techniques and c) automated grid refinement. The par-
allelization of the kinetic algorithm is implemented in the
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molecular velocity space. This is a simple and natural way of par-
allelization inherent in the structure of the algorithm reducing
significantly the required computational effort. The estimates of the
distribution functions at each processor are summed to estimate
the updated macroscopic quantities. Before starting a new itera-
tion, the macroscopic quantities and the impermeability constants
are synchronized and re-transmitted to each processor. This
procedure takes place in the host computer of the parallel scheme.
The computational effort during the first step of the iteration,
which is the most computationally demanding, can be split up to
M� K processors, which correspond to the total number of discrete
velocities, for the case of the slit and M2 processors for the case of
the orifice. The scaling characteristics of the algorithm are quite
Fig. 2. Distributions of number density (top), temperature (middle) and axial velocity (botto
P1 ¼ 0.5 and d0 ¼ 0.1, 1 and 10.
good, considering the number of variables that must be exchanged
at each iteration. An average efficiency of about 94% for 64
processors and 75% for 256 processors is calculated. It is expected
that extending the parallelization in the physical space will further
reduce the computational cost.

Furthermore, memory handling techniques have been used to
reduce storage requirements due to the 4D and 5D of the distri-
bution function for the slit and orifice flows respectively. Due to the
velocity magnitude independency, a temporary array can be allo-
cated and overwritten after treating each magnitude. The dimen-
sionality of this array can be further reduced by storing the
distribution only in the parts of the domain required by the
marching scheme of the discretized governing equation. For
m) along the symmetry axis for flow through a slit (left) and an orifice (right) with P2/
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example, for the marching procedure toward the positive x
-direction, the distribution is stored only at positions x and x � Dx.
These techniques permit having a two-dimensional array for the
distribution function and practically remove memory limitations.
In this manner, channels of any length can be considered, since the
size of this array is only determined by the height of the entrance/
exit regions and the number of angles in the case of the orifice.

Finally, grid refinement techniques have been implemented in
order to accelerate the convergence of the numerical scheme. In
this context, the simulations are initially performed with a smaller
amount of nodes. After convergence has been reached, the simu-
lation procedure is repeated in a refined mesh, where the physical
space parameters have been doubled, using the previous solution
as an initial condition. Linear interpolation has been used here as
a first approximation. This procedure is repeated until the final
number of nodes has been reached. Following this multiple grid
procedure, the gain in the number of iterations for large values of d0
is significant. It is noted that the number of iterations in dense grids
is about two orders of magnitude smaller than the corresponding
one in sparse grids and therefore the overall CPU time is greatly
reduced.

5. Results and discussion

Numerical results are presented in dimensionless form for the
flow rates and the macroscopic distributions for the slit and orifice
flows in a wide range of the rarefaction parameter d0˛[0,100] and
three pressure ratios P2/P1 ¼ 0, 0.5 and 0.9. The presented results
have been obtained with the upstream and downstream compu-
tational domains varying from 20 � 8 up to 40 � 15 depending on
the pressure ratio and rarefaction parameter. The iteration process
is terminated when a relative convergence criterion of 10�6

imposed on the average residual of each computed macroscopic
quantity per node is fulfilled. Regarding the accuracy of the
Fig. 3. Flow through a slit for P2/P1 ¼ 0.5 and d0 ¼ 0.1 (left) and 10 (right); streaml
presented results, it is noted that all numerical parameters (number
of nodes in the physical space, magnitudes and angles in the
molecular velocity space, size of inlet and outlet regions, conver-
gence criterion) have been modified in order to ensure that the
presented results are grid independent up to at least two significant
figures. This accuracy requires CPU time of hours (d0 � 1), days
(d0 ¼ 10) and weeks (d0 ¼ 100).

The dimensionless flow rates W through a slit and an orifice are
tabulated in Tables 1 and 2, respectively. In both cases the flow rate
is monotonically increased as the rarefaction parameter d0 is
increased. It is seen that the increase of W is small in the free
molecular and continuum regimes and more rapid in the transition
regime. Also, in both cases W is decreased as the pressure ratio P2/
P1 is increased (i.e., the pressure difference between the two
reservoirs becomes smaller). It is also seen that as P2/P1 is increased
the dependency of W on d0 becomes weaker.

For comparison purposes, corresponding results available in the
literature for the slit [6,7] and the orifice [8] flow problems
obtained by the DSMC method are included in Tables 1 and 2
respectively. It is seen that for P2/P1 ¼ 0 and 0.5 the BGK and
DSMC results agree up to at least two significant figures. This very
good agreement clearly demonstrates the accuracy of the kinetic
algorithm and furthermore the reliability of the BGK model for
simulating pressure driven flows. For P2/P1 ¼ 0.9 available DSMC
results exist only for the orifice flow. In this case the agreement
remains very good up to d0 ¼ 1 and then at d0 ¼ 10 and 100 is
reduced but always remains within 7%. It is important to note that,
for both the BGK and DSMC algorithms, the required computational
effort is increased as d0 is increased. However, as the pressure ratio
P2/P1 is increased the required computational effort for the DSMC
algorithm is increased, while this is not the case for the kinetic
algorithm, the computational effort of which is slightly reduced as
the pressure ratio is increased. This is a significant advantage of the
kinetic compared to the DSMC approach.
ines (top) and isolines of number density (middle) and axial velocity (bottom).



Fig. 4. Flow through an orifice for P2/P1 ¼ 0.5 and d0 ¼ 0.1 (left) and 10 (right); streamlines (top) and isolines of number density (middle) and axial velocity (bottom).
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Macroscopic distributions and typical pictures of the flow field
are shown in Figs. 2e4. In Fig. 2, the dimensionless number density,
temperature and axial velocity, for both a slit and an orifice flow,
along the symmetry axis is shown for three characteristic values of
the rarefaction parameter and P2/P1 ¼ 0.5. It is seen that the vari-
ation of the corresponding macroscopic quantities in the slit and
orifice flow is qualitatively similar. Starting with the density vari-
ation, it is seen that far upstream is equal to one, it is rapidly
decreased in the region one unit length before and after the wall
partition and then it gradually approaches the far downstream
conditions. The temperature equals unity in most of the domain,
while close to the partition it is decreased. The drop is related to the
rarefaction parameter and ranges from around 4% for small values
of d0 up to about 16% for d0 ¼ 10. The axial velocity far upstream is
almost zero and is increased in the region just before the partition,
while after the partition it is decreased to almost zero far down-
stream. The maximum value of the velocity is increased as d0 is
increased. The above described behavior is typical for the corre-
sponding macroscopic quantities when P2/P1 s 0.

In Figs. 3 and 4, a more complete picture of the flow fields is
provided for the slit and orifice geometries respectively. Flow
streamlines along with isolines of number density and axial
velocity are plotted for P2/P1 ¼ 0.5 and d0 ¼ 0.1 and 10. Again, there
is a qualitative resemblance between the corresponding slit and the
orifice flows. It is seen that the structure of the flow field between
rarefied and dense atmospheres is different. At d0 ¼ 0.1 the
streamlines are almost symmetric with regard to the y axis, while at
d0 ¼ 10 there is no symmetry and a vortex appears next to the
partition at the downstream container. Also, as the atmosphere
becomes more dense, the flow accelerates faster and the maximum
axial velocity is increased. The saw-like shape of the isolines
appearing for the small values of the rarefaction parameter has only
numerical character and it is not related to the physical properties
of the flow. This is a disadvantage of the discrete velocity method
which is not easily circumvented.
6. Concluding remarks

An efficient fully deterministic kinetic algorithm has been
applied for the solution of the pressure driven slit and orifice flows.
By solving the BGK kinetic model subject to Maxwell boundary
conditions the flow rates and the macroscopic quantities of the
flows have been obtained. The computational algorithm includes
parallelization in the molecular velocity space, drastic reduction in
memory demands and acceleration of the iteration map by
multiple grid methods. The results are in very good agreement with
previously reported DSMC results, clearly indicating the accuracy of
the proposed algorithm and the reliability of the BGK model for
solving pressure driven flows.
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